60 research outputs found

    A Simple Guide Screw Method for Intracranial Xenograft Studies in Mice

    Get PDF
    The grafting of human tumor cells into the brain of immunosuppressed mice is an established method for the study of brain cancers including glioblastoma (glioma) and medulloblastoma. The widely used stereotactic approach only allows for the injection of a single animal at a time, is labor intensive and requires highly specialized equipment. The guide screw method, initially developed by Lal et al.,1 was developed to eliminate cumbersome stereotactic procedures. We now describe a modified guide screw approach that is rapid and exceptionally safe; both of which are critical ethical considerations. Notably, our procedure now incorporates an infusion pump that allows up to 10 animals to be simultaneously injected with tumor cells

    Heparin-Binding Epidermal Growth Factor-Like Growth Factor Signaling in Flow-Induced Arterial Remodeling

    Get PDF
    Heparin-binding EGF-like growth factor (HB-EGF) is activated by reduced endothelial shear stress and stimulates smooth muscle cell (SMC) proliferation in vitro. More- over, HB-EGF is augmented at sites of intimal hyperplasia and atherosclerosis— conditions favored by low/disturbed shear stress. We thus tested whether HB-EGF contributes to low Flow-Induced NUegative hypertrophic Remodeling (FINR) of mouse carotid artery. Blood flow was surgically decreased in the left and increased in the right common carotids. After 21 days, left carotid exhibited lumen narrowing, thickening of intima-media and adventitia, and increased circumference that were inhibited by ~50% in HB-EGF+/- and ~90% in HB-EGF-/- mice. FINR was also inhibited by the EGF receptor inhibitor, AG1478. In contrast, eutrophic outward remodeling of the right carotid was unaffected in HB-EGF+/- and HB-EGF-/- mice or by AG1478. FINR-induced proliferation and leukocyte accumulation were reduced in HB-EGF-/-. FINR was associated with increased: reactive oxygen species, expression of pro-HB-EGF and TACE (pro-HB-EGF sheddase), phosphorylation of EGFR and Erk1/2, and NF-κB activity. Apocynin and deletion of p47phox inhibited FINR, while deletion of HB-EGF abolished NF-κB activation in SMCs. These findings suggest that HB-EGF signaling is required for low flow-induced hypertrophic remodeling and may participate in vascular wall disease and remodeling

    LUMOS - Low and Intermediate Grade Glioma Umbrella Study of Molecular Guided TherapieS at relapse: Protocol for a pilot study

    Get PDF
    Grades 2 and 3 gliomas (G2/3 gliomas), when combined, are the second largest group of malignant brain tumours in adults. The outcomes for G2/3 gliomas at progression approach the dismal outcomes for glioblastoma (GBM), yet there is a paucity of trials for Australian patients with relapsed G2/3 gliomas compared with patients with GBM. LUMOS will be a pilot umbrella study for patients with relapsed G2/3 gliomas that aims to match patients to targeted therapies based on molecular screening with contemporaneous tumour tissue. Participants in whom no actionable or no druggable mutation is found, or in whom the matching drug is not available, will form a comparator arm and receive standard of care chemotherapy. The objective of the LUMOS trial is to assess the feasibility of this approach in a multicentre study across five sites in Australia, with a view to establishing a national molecular screening platform for patient treatment guided by the mutational analysis of contemporaneous tissue biopsies

    Non-Agonistic Bivalent Antibodies That Promote c-MET Degradation and Inhibit Tumor Growth and Others Specific for Tumor Related c-MET

    Get PDF
    The c-MET receptor has a function in many human cancers and is a proven therapeutic target. Generating antagonistic or therapeutic monoclonal antibodies (mAbs) targeting c-MET has been difficult because bivalent, intact anti-Met antibodies frequently display agonistic activity, necessitating the use of monovalent antibody fragments for therapy. By using a novel strategy that included immunizing with cells expressing c-MET, we obtained a range of mAbs. These c-MET mAbs were tested for binding specificity and anti-tumor activity using a range of cell-based techniques and in silico modeling. The LMH 80 antibody bound an epitope, contained in the small cysteine-rich domain of c-MET (amino acids 519–561), that was preferentially exposed on the c-MET precursor. Since the c-MET precursor is only expressed on the surface of cancer cells and not normal cells, this antibody is potentially tumor specific. An interesting subset of our antibodies displayed profound activities on c-MET internalization and degradation. LMH 87, an antibody binding the loop connecting strands 3d and 4a of the 7-bladed β-propeller domain of c-MET, displayed no intrinsic agonistic activity but promoted receptor internalization and degradation. LMH 87 inhibited HGF/SF-induced migration of SK-OV-3 ovarian carcinoma cells, the proliferation of A549 lung cancer cells and the growth of human U87MG glioma cells in a mouse xenograft model. These results indicate that c-MET antibodies targeting epitopes controlling receptor internalization and degradation provide new ways of controlling c-MET expression and activity and may enable the therapeutic targeting of c-MET by intact, bivalent antibodies
    • …
    corecore